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1. Statement of problem

Let us consider the problem of computing a fixed point v∗ ∈ �∗
0 of extreme

mapping [7, 8]

v∗ ∈ Argmin{�(v∗, w) | w ∈ �0}. (1)

Here the function �(v,w) is defined on the product space Rn × Rn and �0 ⊆
Rn is a convex closed set. We also assume that the extreme (marginal) mapping
w(v) ≡ Argmin{�(v,w) | w ∈ �0} is defined for all v ∈ �0 and the solution
set �∗

0 = {v∗ ∈ �0 | v∗ ∈ w(v∗)} ⊆ �0 of the initial problem is nonempty.
According to Kakutani’s fixed point theorem the latter assertion follows from the
continuity of �(v,w) and the convexity of �(v,w) in w for any v ∈ �0, where
�0 is compact. In this case w(v) is an upper semicontinuous mapping that maps
each point of the convex, compact set �0 into a closed convex subset of �0 [9].

By definition of (1), any fixed point satisfies the inequality

�
(
v∗, v∗) � �

(
v∗, w

) ∀w ∈ �0. (2)

Let us introduce the function �(v,w) = �(v,w) − �(v, v) and use it to present
(2) as

�(v∗, w) � 0 ∀w ∈ �0. (3)

Inequality (3) is a consequence of (1). But if this inequality is considered as
primary then it is known as Ky Fan’s inequality [9] since it is proved in [14] that
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there exists the solution of (3) that is vector v∗. In this case the existence of the
fixed point of (1) results from (3).

Problem (1) can be considered from various standpoints. On the one hand, this
problem is an extreme inclusion, which generalizes the concept of operator equa-
tions. On the other hand, this problem may be considered as a scalar convolution
of various game problems that describe the matching of conflicting interests and/or
factors for many agents. Let us illustrate this by examples.

1.1. SADDLE-POINT PROBLEMS [16]

Let L : Rn × Rm → R be a convex-concave function such that (x∗, p∗) ∈ Q× P

is a saddle point of L(z, y). By definition it satisfies the system of inequalities

L(x∗, y) � L(x∗, p∗) � L(z, p∗) ∀z ∈ Q ⊆ Rn, ∀y ∈ P ⊆ Rm. (4)

We introduce a normalized function �(v,w) = L(z, p) − L(x, y), where w =
(z, y), v = (x, p). Then problem (4) can be written easily in new variables in the
form (1). Both formulations are equivalent [4].

1.2. N-PERSON GAMES WITH NASH EQUILIBRIA [23]

Let fi(xi, x−i ) be the payoff function of i−th player, i ∈ I . This function depends
both on his own strategy xi ∈ Xi , where Xi = (xi)i∈I , and on the strategies x−i =
(xj )j∈I\i of other players. The equilibrium points x∗

i , i = 1, ..., n, of an n−person
game is the solution to the system of extreme inclusions

x∗
i ∈ Argmin{fi(xi, x∗

−i ) | xi ∈ Xi}. (5)

Now we introduce a normalized function

�(v,w) =
n∑
i=1

fi(xi, x−i ),

where w = (xi), v = (x−i ), i = 1, ..., n and (xi, x−i ) ∈ �0. Using this function,
we can rewrite problem (5) as (1). Other examples can be found in [3, 12, 17, 18,
21].

2. Splitting of functions

We select two linear subspaces in the linear space of the real-valued functions
�(v,w). Both subspaces are characterized by the following properties

�(v,w)−�(w, v) = 0 ∀w ∈ �0, ∀v ∈ �0, (6)

�(v,w)+�(w, v) = 0 ∀w ∈ �0, ∀v ∈ �0. (7)
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The functions of the first subspace are called symmetric; those of the second
class, anti-symmetric. If these functions are defined on a square net, we have the
conventional classes of symmetric and antisymmetric matrices.

Recall that a pair of points with coordinates w, v and v,w is situated symmet-
rically concerning the diagonal of the square �0 × �0, i.e., with respect to the
linear manifold v = w. This allows us to introduce the concept of a transposed
function [5]. If we assign the value of �(w, v) calculated at the point w, v to
every point with coordinates v,w, that is v,w → �(w, v), then we obtain the
transposed function �T (v,w) = �(w, v). In terms of this function conditions (6)
and (7) look like

�(v,w) = �T (v,w) , � (v,w) = −�T (v,w) .

Using the obvious relations �(v,w) = (�T (v,w))T , (�1(v,w)+�2(v,w))
T =

�T
1 (v,w)+�T

2 (v,w), we can readily verify that any real function �(v,w) can be
represented as the sum

�(v,w) = S(v,w)+K(v,w), (8)

where S(v,w) and K(v,w) are symmetric and antisymmetric functions, respect-
ively. This expansion is unique, and

S(v,w) = 1

2

(
�(v,w)+�T (v,w)

)
, K(v,w) = 1

2

(
�(v,w)−�T (v,w)

)
.

(9)

The classes of symmetric and antisymmetric functions are subsets of more gen-
eral functional classes, namely, of pseudo-symmetric and skew-symmetric func-
tions. In the following section we will investigate properties of classes of these
functions.

3. Pseudo-symmetric functions

Now we shall give the following definitions.

DEFINITION 1. A differentiable function �(v,w) from R
n × R

n in R
1 is called

pseudo-symmetric on �0 × �0, if there exists a differentiable function p(v) such
that

∇p(v) = 2∇w�(v,w)|w=v ∀v ∈ �0, (10)

where ∇p(v) is the gradient of p(v) and ∇w�(v,w) is the partial gradient of the
function �(v,w) in w. The function p(v) is called the potential for the operator
∇w�(v,w) |w=v .

The latter means that there exists function p(w), such that its gradient coincides
with the operator 2∇w�(v,w)|w=v.
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If the function p(w) is twice continuously differentiable, then the Lagrange
formula follows from (10)

p(v + h) = p(v)+ 2
∫ 1

0
〈∇w�(v + th, v + th), h〉dt. (11)

On the contrary, if the Jacobi matrix ∇F(v) for the operator F(v) = ∇w�(v,

w)|w=v is symmetric for all v ∈ �0, then (11) holds and, in this case, operator
∇w�(v, v) is potential [25].

So, if the objective function of (1) satisfies (10) or (11), then the equilibrium
problem is said to be potential.

The set of all pseudo-symmetric functions generates a linear space.
The pseudo-symmetric functions include all symmetric functions (6). Indeed, if

�(v,w) is a differentiable function, then we obtain by differentiating identity (6)
in w :

∇w�(v,w) = ∇v�(w, v) ∀w ∈ �0, ∀v ∈ �0. (12)

Let’s assume w = v in (12); then we have

∇v�(v, v) = ∇w�(v, v) ∀v ∈ �0. (13)

Thus, we can formulate the following

PROPERTY 1. The restrictions of partial derivatives of symmetric functions onto
the diagonal of the square �0 ×�0 are identical.

By the definition of the differentiability of �(v,w), we get [29]

�(v + h,w + k) =�(v,w)+ 〈∇v�(v,w), h〉 +
+ 〈∇w�(v,w), k〉 + ω(v,w, h, k), (14)

where ω(v,w, h, k)/(|h|2+|k|2)1/2 → 0 as |h|2+|k|2 → 0. Letw = v and h = k;
then with regard to (13) we get from (14)

�(v + h, v + h) = �(v, v)+ 2〈∇w�(v, v), h〉 + ω(v, h), (15)

where ω(v, h)/|h| → 0 as |h| → 0. Since formula (15) is a particular case of
(14), it means that the restriction of the gradient ∇w�(v,w) on the diagonal of the
square �0 ×�0 is the gradient ∇�(v, v) of function �(v, v), i.e.

2∇w�(v,w)|v=w = ∇�(v, v) ∀v ∈ �0. (16)

Thus, we prove

PROPERTY 2. If�(v,w) is a symmetric function, then the operator ∇w�(v,w)|w=v
is potential and coincides with the restriction of the gradient of �(v,w) on the
diagonal of the square, i.e. 2∇w�(v,w)|w=v = ∇�(v, v) = ∇p(v).
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The concept of potentiality in the scientific literature is considered rather for a
long time. Apparently, one of the first article, where the potential was used for the
substantiation of asymptotic stability for a gradient method to solve an n-person
game, was the publication [28]. In [15] a close approach has been considered . In
one of the recent paper [22], the concept of potential game was introduced by using
Cournot’s game as an example in the following way. Consider the n-person game

x∗
i ∈ Argmin{fi(xi, x∗

−i ) | xi ∈ Xi},
with the Nash equilibrium, where fi(xi, x−i ) is a payoff function of the i-th player,
i ∈ I = {1, 2, ..., n}, and (xi, x−i ) = x ∈ X1 ×X2, ...,×Xn, and x−i = (xj )j∈I\i.
If there exists a function p(x1, x2, ..., xn) such that

∂p(x1, x2, ...xn)

∂xi
= ∂fi(x1, x2, ..., xn)

∂xi
, i ∈ I, (17)

then the game is called potential. In other words, partial derivatives of payoff func-
tions in own variables of the players build the gradient of some function p(x1, x2, ...,

xn), which is called the potential. We shall present the right-hand side of (17) in
the form

∂fi(x1, x2, ...xn)

∂xi
= ∂fi(xi, x−i )

∂xi
, i ∈ I, (18)

and we introduce a normalized function for the considered game

�(v,w) =
n∑
i=1

fi(xi, x−i ),

where w = (xi), v = (x−i ), i = 1, ..., n and (xi, x−i ) ∈ �0. Since the function
�(v,w) is separable in w and the set X has a block structure, we have

∇w�(v,w) |v=w =
(
∂fi(xi, x−i )

∂xi

)T
i ∈ I, (19)

where (a)T− is a vector-column. Comparing (17), (18) and (19), we have

∇P(v) = ∇w�(v,w) |v=w .
Thus, potential games in sense of (17) are potential games in sense of (10).

4. Potential equilibrium problems

We reveal now that if the objective function of (1) is pseudo-symmetric onto �0 ×
�0, then this problem can be considered as an optimization problem. Indeed, from
(2) we have

〈∇w�(v
∗, v∗), w − v∗〉 � 0 ∀w ∈ �0. (20)
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By virtue of (10) from (20) we get

〈∇p(v∗), w − v∗〉 � 0 ∀w ∈ �0. (21)

If the operator ∇p(v) is monotone, then p(v) is a convex function over �0

and v∗ ∈ �∗ is its optimal solution. In this case equilibrium potential problem (1)
can be replaced by optimization of the function p(v) over �0. The function p(v),
generally speaking, is not convex and condition (21) is necessary only. If �(v∗, w)
is a convex function, then v∗ is an equilibrium solution of (1) independently from
the convexity properties of p(v).

It is well known that variational inequality (20) is equivalent to solving the
operator equation [26]

v∗ = π�0(v
∗ − α∇w�(v

∗, v∗)), α > 0, (22)

where π�0(...) is the projection operator of a certain vector onto the set �0. Both
formulas are the necessary conditions for the minimum of the function �(v∗, w)
on the set �0.

The residual π�0(v − α∇w�(v, v)) − v of equation (22) always generates a
vector field [6] of the kind F : v → π�0(v − α∇w�(v, v)) − v. This map takes
the value of zero at solution points of problem (1). The latter means the solutions
of (22) are fixed points. It is possible to construct various iterative or differential
processes at any vector field such that trajectories of these processes converge to
fixed points.

To solve operator equation (22) one can use the gradient projection method. But
in this paper we deal with the gradient prediction-type projection method [8] from
reasons of symmetry

ūn = π�0(v
n − α∇w�(v

n, vn)),

vn+1 = π�0(v
n − α∇w�(ū

n, ūn)). (23)

This method as applied to saddle-point problems was first described in [19]. An-
other modification of this method, given by

ūn = π�0(v
n − α∇w�(v

n, vn)),

vn+1 = π�0(v
n − α∇w�(ū

n, vn)).

was independently proposed in [1].
It required that the operator ∇w�(v, v) = ∇p(v) satisfies to the Lipschitz

condition

|p(v + h)− p(v)− 〈∇p(v), h〉| � 1

2
L|h|2, (24)
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for all v + h and v from a certain set, where L is a constant. Inequality (24) is
equivalent to

|∇p(v + h, v + h)− ∇p(v, v)| � L|h|. (25)

The Lipschitz constants in both cases are the same.
To prove the convergence of process (23) we need an estimate of the deviation

of the vectors ūn and vn+1. Taking into account (25), we obtain from (23)

|ūn − vn+1| � α|∇w�(v
n, vn)− ∇w�(ū

n, ūn)| � αL|vn − ūn|. (26)

We represent the operator equations (23) in the form of variational inequalities

〈ūn − vn + α∇w�(v
n, vn),w − ūn〉 � 0 ∀w ∈ �0, (27)

and

〈vn+1 − vn + α∇w�(ū
n, ūn), w − vn+1〉 � 0 ∀w ∈ �0 (28)

and prove the following

THEOREM 1. Suppose that the set �0 ⊆ Rn is convex, closed, and bounded;
the objective function �(v,w) is pseudo-symmetric (10); its potential obey to the
Lipschitz condition (24). Then, the sequence vn generated by method (23) with the
parameter 0 < α < 1/(

√
2L) has a nonempty set of accumulation points. Each

accumulation point is a equilibrium solution of problem (1).
Proof. By putting w = vn in (27) and w = ūn in (28), we get

|ūn − vn|2 + α〈∇w�(v
n, vn), vn+1 − vn〉 − α〈∇w�(v

n, vn), vn+1 − ūn〉 � 0,

〈vn+1 − vn, vn+1 − ūn〉 + α〈∇w�(ū
n, ūn), vn+1 − ūn〉 � 0.

Adding up these inequalities

〈vn+1 − vn, vn+1 − ūn〉 + |vn − ūn|2 + α〈∇w�(v
n, vn), vn+1 − vn〉

+ α〈∇w�(ū
n, ūn)− ∇w�(v

n, vn), vn+1 − ūn〉 � 0, (29)

and using the identity

|x1 − x3|2 = |x1 − x2|2 + 2〈x1 − x2, x2 − x3〉 + |x2 − x3|2, (30)

we expand the scalar product on the left-hand side of (29) into a sum of squares.
Then, using (25) and (26), we get

|vn+1 − vn|2 + |vn+1 − ūn|2 − |vn − ūn|2 + 2|ūn − vn|2 +
+ 2α〈∇w�(v

n, vn), vn+1 − vn〉 − 2(αL)2|vn − ūn|2 � 0. (31)
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Using (24), we present (31) as

2αp(vn+1)+ d1|vn+1 − vn|2 + |vn+1 − ūn|2 + d2|vn − ūn|2 � 2αp(vn),

where d1 = 1 − αL > 0, d2 = 1 − 2(αL)2 > 0 since α < 1/(
√

2L). The latter
inequality implies that the sequence vn monotonically decreases in the sense of the
quantity p(vn).

Let us sum up the system of inequalities obtained from n = 0 to n = N

2αp(vn+1)+ d1

k=N∑
k=0

|vk+1 − vk|2 +
k=N∑
k=0

|vk+1 − ūk|2 +

+ d2

k=N∑
k=0

|vk − ūk|2 � 2αp(v0).

Hence, the series below are convergent
∞∑
n=0

|vn+1 − vn|2 < ∞,

∞∑
n=0

|vn+1 − ūn|2 < ∞,

∞∑
n=0

|vn − ūn|2 < ∞.

Consequently,

|vn+1 − vn| → 0, |vn+1 − ūn| → 0, |vn − ūn| → 0, n → ∞. (32)

Since �0 is a bounded set, the sequence vn is bounded; i.e., there exist an
element v

′
such that vni → v

′
as ni → ∞, and this follows from (32) we have:

vni+1 → v
′
, ūni → v

′
.

Consider any inequality (27) or (28) for all ni → ∞. Passing to the limit, we
obtain

〈∇w�(v
′
, v

′
), w − v

′ 〉 � 0 ∀w ∈ �0. (33)

Since �(v,w) is convex in w for any v, the inequality

�(v
′
, w)−�(v

′
, v

′
) � 〈∇w�(v

′
, v

′
), w − v

′ 〉 ∀w ∈ �0 (34)

holds. Taking into account (33), we have

�(v
′
, v

′
) � �(v

′
, w) ∀w ∈ �0.

The inequality obtained, evidently, coincides with (2). The latter it means v
′ =

v∗ ∈ �∗
0, i.e., any limit point of vn is an equilibrium solution to the problem. The

theorem is proved.
The assertion proven can be considered as the existence theorem for solution of

equilibrium problem (1).

5. Skew-symmetric functions and bilinear differential

We introduce the following
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DEFINITION 2. A function�(v,w) from R
n×R

n to R
1 is called skew-symmetric

onto �0 ×�0, if it obeys the inequality [7]

�(w,w)−�(w, v)−�(v,w)+�(v, v) � 0 ∀w ∈ �0, ∀v ∈ �0. (35)

If the inequality

�(w,w)−�(w, v∗)−�(v∗, w)+�(v∗, v∗) � 0 ∀w ∈ �0, (36)

holds, where v∗ ∈ �∗, then the function �(v,w) shall be called skew-symmetric
relative to v∗.

The class of skew-symmetric functions is non-empty, as it includes in itself all
anti-symmetric functions (7). Indeed, put v = w in (7), then�(v, v)+�(v, v) = 0,
i.e., �(v, v) = �(w,w) = 0. Adding �(v, v) and �(w,w) to (7), we obtain
(35). If the anti-symmetric function is convex in w, then it follows from (7) that
it is concave in v. In this case �(v,w) is a saddle point function. To illustrate it
we consider the normalized function �(v,w) for the saddle-point problem, which
satisfies the relations [2]

�(v, v) = 0, �(v,w)+�(w, v) = 0 ∀w ∈ �0, v ∈ �0.

Note that the authors from [10] earlier attempted to extend these conditions to
non-saddle-point problems.

From above it follows that the skew-symmetric equilibrium problems largely in-
herit the properties of saddle-point problems and include them itself. In connection
with this we introduce the following

DEFINITION 3. A function �(v,w) from R
n×R

n in R
1 is called bidifferentiable

at point v, v ∈ �0 ×�0, if there exists a quadratic matrix D(v, v) such that

{�(v + h, v + k)−�(v + h, v)} − {�(v, v + k)−�(v, v)}
= 〈D(v, v)h, k〉 + ω(v, h, k), (37)

where ω(v, h, k)/|h||k| → 0 as |h|, |k| → 0 for all h ∈ R
n, k ∈ R

n.
Bilinear function 〈D(v, v)h, k〉 is called the bilinear differential of function

�(v, v) at the point v, v ∈ �0 ×�0.

The function �(v,w) is called bidifferentiable on the diagonal of the square
�0 ×�0, if it is differentiable for all points of this set.

It is not hard to see that if the function �(v,w) = ϕ1(v) + ϕ2(w) is separable
with respect to their variables, then the bidifferential of such a function is equal to
zero, i.e., D(v, v) = 0, (dij (v, v) = 0 ∀i, j ∈ N).

The introduced differential has a simple geometric sense and enables to estimate
the deviation in v of two increments in w from each other, namely, {�(v + h, v +
k)−�(v + h, v)} and {�(v, v + k)−�(v, v)} under transition from a point v, v
to the point v + h, v + k.
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The bilinear differential represents itself a saddle tangent surface and describes
some singularities of the behaviour of the double increment of �(v,w) with re-
spect to this differential.

There is the question, whether the bilinear differential introduced corresponds
with classical one in the case of differentiability �(v,w)? We show that if�(v,w)
is a twice continuously differentiable function, then matrix D(v, v) coincides with
the restriction of the mixed derivative matrix

∂2�(v,w)

∂w, ∂v
|v=w

on the diagonal of the square for the second differential.
So, if the function f (x) is twice continuously differentiable, then Taylor’s for-

mula [29] takes place

f (x + y)− f (x) = 〈∇f (x), y〉 + 1

2
〈∇2f (x + ϑy)y, y〉, (38)

where 0 � ϑ � 1. Using this formula, it is possible to get the expansion for the first
of three summands �(v+ εh, v+ εk), �(v+ εh, v) and �(v, v+ εk) from (37),
assuming that the increments h and k have the kind of εh and εk, where ε > 0.
Then, if obtained expansions are substituted for (37), then after mutual reductions
of terms with different signs this leads to

1

2
ε2
〈{∇2

vv�(v + ϑ1εh, v + ϑ1εk)− ∇2
vv�(v + ϑ2εh, v)

}
h, h

〉+
+ ε2〈∇2

wv�(v + ϑ1εh, v + ϑ1εk)h, k〉 +
+ 1

2
ε2
〈{∇2

ww�(v + ϑ1εh, v + ϑ1εk)− ∇2
ww�(v, v + ϑ3εk)

}
k, k

〉 =
= ε2〈D(v, v)h, k〉 + ω(v, εh, εk). (39)

Taking into account the continuity of the operators ∇2
vv�(v,w), ∇2

ww�(v,w)

and ω(v, εh, εk)/ε2 → 0, as ε → 0, ε > 0, we have 〈∇2
wv�(v, v)h, k〉 =

〈D(v, v)h, k〉 ∀h, k ∈ R
n. Hence

∇2
wv�(v, v) = D(v, v) ∀v ∈ �0. (40)

Thus, it is possible to formulate the following statement.

PROPERTY 3. If the objective function �(v,w) is twice continuously differ-
entiable, then the matrix D(v, v) of the bilinear differential coincides with the
restriction of the matrix of mixed derivatives of the second differential on the main
diagonal.

Using (40), we calculate the bilinear differential for the normalized (smooth)
function of saddle-point problem (4). Indeed, as �(v,w) = L(z, p) − L(x, y),
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where w = (z, y), v = (x, p), then

∂�(v,w)

∂w
=
(
∂L(z, p)

∂z
, − ∂L(x, y)

∂y

)T
where (., .)T is a vector-column. Further

∂2�(v,w)

∂w∂v
=
(

0 ∂2L(z,p)

∂z∂p

− ∂2L(x,y)

∂y∂x
0

)

If v = w, then by virtue of ∂2L(x, p)/∂x∂p = ∂2L(x, p)/∂p∂x, we have

∂2�(v,w)

∂w∂v
|v=w=

(
0 ∂2L(x,p)

∂x∂p

− ∂2L(x,p)

∂p∂x
0

)
= ∂2L(x, p)

∂x∂p

(
0 1

−1 0

)
.

From here

〈∇2
wv�(v, v)h, h〉 = 〈D(v, v)h, h〉 = 0 ∀v ∈ �0, h ∈ Rn. (41)

We assured that the matrix D(v, v) in (37) for a symmetric function (6) is sym-
metric and for anti-symmetric function (7) is anti-symmetric. Indeed, let �(v,w)
be a symmetric function, consider expansion (37) again

�(v + εh, v + εk)−�(v + εh, v)−�(v, v + εk)+�(v, v) =
= ε2〈D(v, v)h, k〉 + ω(v, εh, εk) (42)

for all v ∈ �0, h ∈ Rn, k ∈ Rn, ε > 0. Since (42) is correct for any pair of
variables h and k, we interchange them and obtain

�(v + εk, v + εh)−�(v, v + εh)−�(v + εk, v)+�(v, v)}
= ε2〈D(v, v)k, h〉 + ω(v, εk, εh). (43)

By virtue of the symmetry of functions, the left-hand sides (42) and (43) are equal,
therefore, their right-hand sides are equal as well

〈D(v, v)h, k〉 = 〈DT (v, v)h, k〉 + (ω(v, εh, εk)− ω(v, εk, εh))/ε2.

From here, we get as ε → 0

D(v, v) = DT (v, v) ∀v ∈ �0.

Let�(v,w) be an anti-symmetric function, i.e., it obeys condition (7). Then we
add inequalities (42) and (43).By virtue of the anti-symmetry condition, we get

0 = 〈(D(v, v)+DT (v, v))h, k〉 + (ω(v, εh, εk)+ ω(v, εk, εh))/ε2.

Hence, as ε → 0, we have

D(v, v) = −DT (v, v) ∀v ∈ �0.

From the last equality, in particular, it follows 〈D(v, v)h, h〉 = 0 ∀h ∈ R
n.
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PROPERTY 4. If the function �(v,w) is symmetric, then D(v, v) is a symmetric
matrix for all v ∈ �0, if �(v,w) is an anti-symmetric function, then D(v, v) is an
anti-symmetric matrix for all v ∈ �0.

The conversion, generally speaking, is not true. Indeed, let �(v,w) be a sym-
metric function, then the function of the kind �(v,w)+ϕ(v) is not symmetric but
their mixed derivatives (i.e., bilinear differentials) coincide.

From (11) we know that if the Jacobian ∇F(v) of the operator F(v) =
∇w�(v,w)|w=v is a symmetric matrix, then there exists the potential P(v) such
that its gradient coincides with the operator, i.e., ∇P(v) = F(v) = ∇w�(v, v). We
put a question. Is it possible to describe the potential condition in term of bilinear
differential ? Taking into account dv = dw we rewrite the differential of operator
d(F (v)) = d(∇w�(v,w)|w=v) = (∇2

wv�(v,w)dv + ∇2
ww�(v,w)dw)|w=v =

(∇2
wv�(v, v) + ∇2

ww�(v, v))dv. The latter means that Jacobian ∇F(v) has the
form D(v, v)+∇2

ww�(v, v). The matrix ∇2
ww�(v, v) is symmetric as the diagonal

submatrix of second differential d2�(v,w) and, consequently, the symmetry prop-
erty of matrix ∇F(v) is determined completely by the property of symmetry for
the bilinear differential D(v, v). So, the following can be established

PROPERTY 5. If the bilinear differential D(v, v) is a symmetric matrix for all v ∈
�0, then the function �(v,w) is pseudo-symmetric and the operator ∇w�(v, v) is
potential.

State yet the following property of function �(v,w). Let this function be skew-
symmetric; then from (42) we have as h = k

〈D(v, v)h, h〉 + ω(v, εh, εh)/ε2 � 0 ∀h ∈ R
n.

Hence, 〈D(v, v)h, h〉 � 0 ∀h ∈ R
n and v ∈ �0 as ε → 0.

PROPERTY 6. If the function�(v,w) is skew-symmetric, thenD(v, v) is a positive-
semidefinite matrix for all v ∈ �0.

The class of skew-symmetric functions can be described in the other way. Using
the entered bilinear differential, we introduce a class of biconvex functions.

DEFINITION 4. If in (37) the value ω(v, h, k) � 0, then the function �(v,w) is
called biconvex on �0 ×�0. This function satisfies the condition

{�(v + h, v + k)−�(v + h, v)} − {�(v, v + k)−�(v, v)} � 〈D(v, v)h, k〉
(44)

∀v ∈ �0 and h, k ∈ Rn.

If D(v, v) � 0, then the function is called positive biconvex.

The introduced class of biconvex function is nonempty because the normalized
functions of saddle-point problems are biconvex by virtue of condition (41).
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LEMMA 1. The classes of bidifferentiable skew-symmetric and positive biconvex
functions coincide.

Proof. Indeed, let �(v,w) be a skew-symmetric function in the sense of (35).
Assuming that the increment in (37) looks like εh and k = h, we have

〈D(v, v)h, h〉 + ω(v, εh, εh)/ε2 � 0 ∀h ∈ �0.

Hence, as ε → 0, we obtain 〈D(v, v)h, h〉 � 0 ∀h ∈ R
n and v ∈ �0.

On the contrary, if the value 〈D(v, v)h, h〉 � 0 ∀h ∈ R
n and v ∈ �0 in (37),

then the fulfilment of (35) is obvious. The lemma is proved.

In the general case, if the matrix D(v, v) �= 0, v ∈ �0, then it has the repres-
entation D(v, v) = S(v, v)+K(v, v), where S(v, v) = 1

2

(
D(v, v)+DT (v, v)

)
,

K(v, v) = 1
2

(
D(v, v)−DT (v, v)

)
, with S(v, v) a symmetric and K(v, v) an

anti-symmetric matrix, i.e., 〈K(v, v)h, h〉 = 0 ∀h ∈ R
n and v ∈ �0.

We show that in the case of convexity of function �(v,w) in w ∈ �0 condition
(44) entail the bimonotonicity of the restriction of partial gradient ∇w�(v, v) in w
on the diagonal of the square �0 ×�0. Indeed, let the function �(v,w) be convex
in w, then using the system of convex inequalities

〈∇f (x), y − x〉 � f (y)− f (x) � 〈∇f (y), y − x〉 (45)

for all x and y on some set from (44), we have

〈∇w�(v + h, v + h)− ∇w�(v, v), h〉 � 〈D(v, v)h, h〉 ∀v ∈ �0, h ∈ Rn.

(46)

If the condition 〈D(v, v)h, h〉 � 0 ∀h ∈ R
n holds, then monotonicity of

gradient-restriction follows from (46)

〈∇w�(v + h, v + h)− ∇w�(v, v), h〉 � 0 ∀v ∈ �0, h ∈ Rn. (47)

This inequality can be derived from (35), if one uses the convexity condition (45).
Note that, if �(v,w) is the normalized function of saddle-point problem (4), then
(−∇xL(x, y), ∇yL(x, y))

T is a monotone operator. The latter fact follows from
(47) and was established yet in [27].

We consider another useful inequality which allows us to estimate the growth
rate of a function �(v,w) in a neighbourhood of a point v,w ∈ �0 ×�0

|{�(w + h, v + k)−�(w + h, v)} − {�(w, v + k)−�(w, v)}| � L |h| |k|
(48)

for all w, v ∈ �0, h ∈ Rn, k ∈ Rn, where L is a constant. The class of functions
satisfying condition (48) is nonempty [7].

Now, we show that the classes of pseudo-symmetric and
skew-symmetric functions have a nonempty intersection.
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It was stated previously that the symmetric functions possess the potential prop-
erty. But some of them are also skew-symmetric.

Indeed, consider a subset of functions subject to the condition:
�(v,w) �

√
�(w,w)�(v, v) ∀v,w ∈ �0 × �0. Let us write out an expression

similar to the left-hand side of (35). Using (6) and the condition introduced, we
rewrite this expression to obtain: �(w,w) − �(w, v) − �(v,w) + �(v, v) =
�(w,w)− 2�(w, v)+�(v, v) � �(w,w)− 2

√
�(w,w)�(v, v)+�(v, v) =

(
√
�(w,w) − √

�(v, v))2 � 0 ∀v,w ∈ �0, i.e., the function �(v,w) obeys the
skew-symmetric condition. From here, it follows that if �(v,w) is convex in w for
any v ∈ �0, then ∇w�(v, v) is a monotone operator.

6. Generalized or saddle-point potentiality

The expansion (8) shows that any objective function of (1) can be uniquely presen-
ted as sum of symmetric and anti-symmetric functions. However, it is very reas-
onabile to expand the class of these functions up to the class of pseudo-symmetric
and skew-symmetric functions. Both classes are overlapping and the expansion
(8) is not unique in these classes already. The last circumstance can appear useful
as gives capability to select elements of expansion with the necessary properties,
for example, (quasi-, pseudo-) convexity. Thus, we shall consider the functions
S(v,w) and K(v,w) in expansion (8) as pseudo-symmetric and skew-symmetric
ones. From (8) we have

∇w�(v,w)|v=w = ∇wS(v,w)|v=w + ∇wK(v,w)|v=w. (49)

Using the pseudo-symmetric condition (10), we present equality (49) in the form

∇w�(v, v) = 1

2
∇p(v)+ ∇wK(v, v). (50)

Recall that a fixed point of (1) satisfies inequality (20). Considering (50), this
inequality can be written as〈

1

2
∇p(v∗)+ ∇wK(v

∗, v∗), w − v∗
〉

� 0 ∀w ∈ �0. (51)

This inequality is necessary and in the case of a convex function p(w)+K(v∗, w)
it is a sufficient condition for a minimum of the problem

v∗ ∈ Argmin{P(v∗, w) = 1

2
p(w)+K(v∗, w) | w ∈ �0}. (52)

Hence, we obtain two equilibrium problems (1) and (52) such that the necessary
conditions (20) and (51) coincide because of the equality
∇w�(v,w)|w=v = ∇wP (v,w)|w=v. In the sequel both operators we will call as the
gradient-restrictions.
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EXAMPLE 1. If the objective function of (1) is bilinear, i.e., 〈Fv,w〉 = 〈Sv,w〉+
〈Kv,w〉, and matrix F has unique presentation F = S + K, where S and K

are symmetric and anti-symmetric matrices, then the skew-symmetric function
P(v,w) has the form 〈Pv,w〉 = 1

2〈Sw,w〉 + 〈Kv,w〉.
Because the necessary condition of (1) and (52) concur, the convergence of

any method for solving (1) depend on the properties of the gradient-restriction
∇wP (v,w)|w=v for skew-symmetric function P(v,w). From the reasoning of pre-
vious section we know that if function P(v,w) is convex in w for any v, then the
operator ∇wP (v, v) is monotone. The monotonicity is rather a hard condition for
this operator. Therefore any possibility to relax this demand is of interest.

The procedure of generalization is performed in two directions: we consider
pseudo-skew-symmetry instead of skew-symmetry and pseudo-convexity and quasi-
convexity instead of convexity.

DEFINITION 5. The bifunction P(v,w) from R
n × R

n into R
1 is pseudo-skew-

symmetric on �0 ×�0 if, for every pair of distinct points w ∈ �0 and v ∈ �0, we
have

P(v,w)− P(v, v) � 0 implies P(w,w)− P(w, v) � 0. (53)

It is not hard to check up that any skew-symmetric bifunction (35) satisfies the
pseudo-skew-symmetric condition (53). The definition introduced enlarges the ana-
logous notion from[11].

Put in remembrance the definitions of pseudo-convexity and quasi-convexity.

DEFINITION 6. A differentiable function f (v) on a convex subset Q ∈ Rn, is
pseudo-convex [20] if, for every pair of distinct points w ∈ Q, v ∈ Q, we have

〈∇f (v),w − v〉 � 0 implies f (w)− f (v) � 0 (54)

DEFINITION 7. A differentiable function f (v) on a convex subset Q ∈ Rn, is
quasi-convex [20], [24] if, for every pair of distinct points w ∈ Q, v ∈ Q, we have

f (w)− f (v) � 0 implies 〈∇f (v),w − v〉 � 0. (55)

In [13, 20] it is proved that any pseudo-convex function is quasi-convex, i.e., from
(54) follows (55).

Assuming that the function P(v,w) is pseudo-convex in w for any v, then
necessary condition (51) entails:

〈∇wP (v
∗, v∗), w − v∗〉 � 0 implies P(v∗, w)− P(v∗, v∗) � 0 ∀w ∈ �0.

(56)

From (56) and (53) as v = v∗ it follows

P(w,w)− P(w, v∗) � 0 ∀w ∈ �0. (57)
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We introduce the function �(v,w) = P(v,w) − P(v, v) and the last two
inequalities (56) and (57) can be presented as in the form

�(v, v∗) � �(v∗, v∗) � �(v∗, w) ∀w ∈ �0. (58)

Hence, this establishes that, if v∗ is equilibrium solution, then the pair v∗, v∗ is a
saddle point for function �(v,w).

Applying this to a solution v∗ of variational inequality

〈F(v∗), w − v∗〉 � 0∀w ∈ �0,

we come to the following

DEFINITION 8. An operator F(v) : �0 → Rn is called a saddle-point potential,
if there exists a function �(v,w) = P(v,w)− P(v, v) differentiable in w for any
v such that its gradient-restriction coincides with given operator

∇w�(v,w)|w=v = F(v) ∀v ∈ �0, (59)

and pair v∗, v∗ is a saddle point for �(v,w), i.e., it satisfies the condition (58).

By virtue of (50) the operator ∇w�(v,w)|w=v of equilibrium problem (1) with
skew-symmetric function �(v,w) is always generalized-potential. This situation
can be considered as likeness to optimization, where the gradient is always a po-
tential operator.

Consequently, one can say that the establishment of saddle-point potential gives
capabilities to convert the equilibrium problem to the saddle-point problem, at that
�(v∗, v∗) = 0. Note that the function �(v,w) in general case is not convex-
concave though �(v,w) may be convex–concave. This saddle-point factor will be
used for designing methods for computing equilibria. However under reasoning of
convergence of gradient-type methods we need to use a gradient analog of (58).

Since, by definition, the function P(v,w) is pseudo-convex in w for any v, this
function, it was noted previously, is quasiconvex in w for any v. It means that from
(57), seeing (55), we have

〈∇wP (w,w),w − v∗〉 � 0 ∀w ∈ �0.

Taking into account that ∇wP (v, v) = 1
2∇p(v) + ∇wK(v, v), we combine the

inequality obtained to (51), then

〈∇wP (w,w), v
∗ − w〉 � 〈∇wP (v

∗, v∗), v∗ − v∗〉
� 〈∇wP (v

∗, v∗), w − v∗〉∀w ∈ �0, (60)

i.e., v∗, v∗ is saddle point for function 〈∇wP (v, v),w−v〉. From (60), in particular,
on the strength ∇w�(v,w)|w=v = ∇wP (v,w)|w=v we have

〈∇w�(w,w),w − v∗〉 � 0 ∀w ∈ �0. (61)
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This is the key condition for convergence of gradient-type methods.
Accordingly, if the function �(v,w) from (1) is skew-symmetric, then v∗, v∗ is

its saddle point. If this function is not skew-symmetric, then there exists a saddle-
point potential P(v,w) such that v∗, v∗ is a saddle point provided that �(v,w) is
pseudo-convex inw for all v. Furthermore, this point is a saddle point for a function
of the form 〈∇wP (v, v),w − v〉.

There are classes of skew-symmetric functions �(v,w) and accordingly equi-
librium problems answering to these functions, whose solutions satisfy more re-
strictive inequalities than (58), namely (recall that �(v∗, v∗) = 0 )

�(w, v∗) � −γ |w − v∗|1+ν ∀w ∈ �0, (62)

where v∗ ∈ �∗ is the solution of problem, γ � 0 and ν ∈ [0,∞] are parameters.
We rewrite (62) in the form

P(w,w)− P(w, v∗) � γ |w − v∗|1+ν ∀w ∈ �0. (63)

The inequality obtained we shall call as a condition of the sharpness for a skew-
symmetric equilibrium. If γ > 0, then with ν = 0 we have the sharp equilibrium,
and with ν = 1 quadratic equilibrium. If γ = 0, we get the left-hand inequality in
(58) (see [7, 8]).

7. Generalized potential equilibrium problems

In Section 4 we investigated the convergence conditions of gradient prediction-
type method (23) for potential equilibrium problems. In this section we discuss
the convergence of this method for generalized potential equilibrium problems.
Thereby it is supposed that the generalized potential, which exists always, has some
additional convexity properties in the optimization variable.

Therefore it is supposed additionally that the gradient-restriction to �(v,w)
satisfies the Lipschitz condition (25)

|∇w�(v + h, v + h)− ∇w�(v, v)| � L|h| ∀v ∈ �0, h ∈ Rn. (64)

Prove the following

THEOREM 2. Suppose that the set �0 ∈ Rn is convex and closed; the objective
function�(v,w) is convex inw for any v, differentiable and its gradient-restriction
∇w�(v,w)|w=v satisfies the Lipschitz condition (64); there exists a saddle point
potential �(v,w), (i.e., the skew-symmetric function P(v,w) is pseudoconvex in
w for any v). Then, the sequence vn generated by method (23) with 0 < α <

1/(
√

2L) converges to the solution of the equilibrium problem (1) monotonically
in the norm of the space.

Proof. By putting w = v∗ ∈ �∗ in (28), we get

〈vn+1 − vn + α∇w�(ū
n, ūn), v∗ − vn+1〉 � 0. (65)
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Using (26),(64) and (61), we transform apart the following term

〈∇w�(ū
n, ūn), v∗ − vn+1〉 = 〈∇w�(ū

n, ūn), v∗ − ūn〉
+ 〈∇w�(ū

n, ūn), ūn − vn+1〉 � 〈∇w�(ū
n, ūn), v∗ − ūn〉

− 〈∇w�(v
n, vn)− ∇w�(ū

n, ūn), ūn − vn+1〉 + 〈∇w�(v
n, vn), ūn − vn+1〉

� αL2|vn − ūn|2 + 〈∇w�(v
n, vn), ūn − vn+1〉.

Taking into account the estimate obtained, we rewrite (65) as

〈vn+1 − vn, v∗ − vn+1〉 + (αL)2|vn − ūn|2 + α〈∇w�(v
n, vn), ūn − vn+1〉 � 0

(66)

Set w = vn+1 in (27) to get

〈ūn − vn, vn+1 − ūn〉 + α〈∇w�(v
n, vn), vn+1 − ūn〉 � 0. (67)

Adding (66) and (67), then

〈vn+1 − vn, v∗ − vn+1〉 + 〈ūn − vn, vn+1 − ūn〉 + (αL)2|vn − ūn|2 � 0.
(68)

The first two terms in the obtained inequality we expand by means of identity
(30) into a sum of squares

|vn+1 − v∗|2 + |vn+1 − vn|2 + |vn − ūn|2 + |ūn − vn+1|2 − 2(αL)2|ūn − vn|2
� |vn − v∗|2 + |vn+1 − vn|2.

From here

|vn+1 − v∗|2 + d|vn − ūn|2 + |ūn − vn+1|2 � |vn − v∗|2, (69)

where d = 1 − 2(αL)2 > 0, since α < 1/(
√

2L). From here, under α < 1/(
√

2L)
it follows the monotone decrease of quantity |vn − v∗|2 as n → ∞. Summing up
the inequalities (69) from n = 1 to n = N , we obtain

|vN+1 − v∗|2 + d

n=N∑
n=1

|vn − ūn|2 +
n=N∑
n=1

|ūn − vn+1|2 � |v0 − v∗|2.

This inequality implies the convergence of the series
∑n=N

n=1 |vn − ūn|2 < ∞,∑n=N
n=1 |ūn − vn+1|2 < ∞. Hence

|vn − ūn|2 → 0, |ūn − vn+1|2 → 0, n → ∞. (70)

Since the sequences vn and ūn are bounded, there exists a subsequence vni and
point v

′
such that vni → v

′
as ni → ∞, and in addition, vni+1 → v

′
, ūni → v

′
.
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Let us consider inequality (27) for n = ni . Passing to the limit, we will obtain
the necessary condition (33). The monotonic decrease of the quantity |vn − v∗|
guarantees the uniqueness of the limit point, i.e., the convergence vn → v∗ as
n → ∞ to a solution of variational inequality (33). By virtue of the convexity
�(v,w) in w for any v the calculated point is a solution of equilibrium problem
(1). The theorem is proved.

Note that this theorem is proved under pseudo-convexity of function P(v,w)
in w for any v. In these conditions the gradient-restriction ∇w�(v,w)|w=v =
∇wP (v,w)|w=v, in general, is not a monotone operator and, consequently, the
convergence of method (23) is proved for the solution of variational inequality
(20) with a non-monotone operator.

8. Finite convergence

The estimates for the convergence rate of the gradient prediction-type method (23)
depend, as should be expected, on the behavior of the objective function in the
neighborhood of the equilibrium solution. We assume that this function satisfies
the sharpness condition (63) for ν = 0

�(w,w)−�(w, v∗) � γ |w − v∗| ∀w ∈ �0. (71)

Taking into account the convexity (45) of function �(v,w) in w for all v from
(71), we have

〈∇w�(w,w), v
∗ − w〉 � −γ |w − v∗| ∀w ∈ �0. (72)

In addition, we assume that the gradient-restriction ∇w�(v, v)|w=v satisfies the
Lipschitz condition (64). Examples of problems satisfying the above sharpness
condition can be found in [7, 8].

THEOREM 3. Suppose that the set �0 ∈ Rn is convex and closed; the solution
set (1) is nonempty and satisfies sharpness condition (71), the objective func-
tion �(v,w) is differentiable and convex in w for any v, the gradient-restriction
∇w�(v,w)|w=v satisfies Lipschitz condition (64). Then, the sequence vn generated
by method (23) with parameter 0 < α < 1/L converges to a solution of (1) in a
finite number of iterations, i.e., there exists a number n0 such that vn0 is a solution
of (1).

Proof. Setting w = v∗ in (28), w = vn+1 in (27), we add these inequalities to
obtain

〈vn+1 − vn, v∗ − vn+1〉 + 〈ūn − vn, vn+1 − ūn〉
+ α〈∇w�(ū

n, ūn)− ∇w�(v
n, vn), ūn − vn+1〉

+ α〈∇w�(ū
n, ūn), v∗ − ūn〉 � 0. (73)
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Transforming the first two terms, we estimate the third one using (26) and (64),
then

〈vn+1 − vn, v∗ − ūn〉 − |vn+1 − ūn|2 + (αL)2|ūn − vn|2
+ α〈∇w�(ū

n, ūn), v∗ − ūn〉 � 0.

Using the identity (30), we transform the second term |vn+1 − ūn|2 to get

α〈∇w�(ū
n, ūn), ūn − v∗〉 + |vn+1 − vn|2 + 2〈vn+1 − vn, vn − ūn〉

+ d|ūn − vn|2 � 〈vn+1 − vn, v∗ − ūn〉,
where d = 1 − (αL)2 > 0, since α < 1/L. From (72) we have

〈∇w�(ū
n, ūn), ūn − v∗〉 � γ |ūn − v∗|.

In respect to the estimate obtained we rewrite the above inequality

αγ |ūn − v∗| + |vn+1 − vn|2 + 2〈vn+1 − vn, vn − ūn〉 + d|ūn − vn|2
� 〈vn+1 − vn, v∗ − ūn〉.

We single out a perfect square from the third and fourth terms:

αγ |ūn − v∗| +
∣∣∣∣ 1√
d
(vn+1 − vn)+ √

d(vn − ūn)

∣∣∣∣
2

+
(

1 − 1

d

)
|vn+1 − vn|2 � 〈vn+1 − vn, v∗ − ūn〉.

Hence, we obtain

αγ |ūn − v∗| � |vn+1 − vn||v∗ − ūn| +
(

1

d
− 1

)
|vn+1 − vn|2.

Assuming that |ūn − v∗| �= 0 for all n, we get

αγ � |vn+1 − vn| +
(

1

d
− 1

) |vn+1 − vn|2
|ūn − v∗| . (74)

We will consider inequality (74) later on. Now, we write inequality (69), which
is also valid under the hypotheses of Theorem 3

|vn+1 − v∗|2 + d|vn − ūn|2 + |ūn − vn+1|2 � |vn − v∗|2.
Applying the estimate

1

2
|x1 − x2|2 � |x1 − x3|2 + |x3 − x2|2, (75)
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and observing d < 1, we transform the latter inequality

|vn+1 − v∗|2 + d

2
|vn+1 − vn|2 � |vn − v∗|2.

Thus

(|vn+1 − v∗| − |vn − v∗|)(|vn+1 − v∗| + |vn − v∗|)+ d

2
|vn+1 − vn|2 � 0.

We divide this inequality by (|vn+1 − v∗| + |vn − v∗|) and take into account the
monotonicity of |vn+1 − v∗| � |vn − v∗| to obtain

|vn+1 − v∗| − |vn − v∗| + d

4

|vn+1 − vn|2
|vn − v∗| � 0. (76)

Summing up (76) from n = 0 to n = N :

|vN+1 − v∗|2 + d

4

k=N∑
k=0

|vk+1 − vk|2
|vk − v∗| � |v0 − v∗|2. (77)

Inequality (77) implies

∞∑
k=0

|vk+1 − vk|2
|vk − v∗| < ∞.

Thus,

|vn+1 − vn|2/|vn − v∗| → 0 as n → ∞.

Using the triangle inequality, we have

|vn+1 − vn|2
|vn − ūn| + |ūn − v∗| � |vn+1 − vn|2

|vn − v∗| → 0 as n → ∞. (78)

Taking into account (70), we rewrite (78) as

|vn+1 − vn|2/|ūn − v∗| → 0 as n → ∞. (79)

Indeed, if (79) is not valid, then there exists a subsequence vni such that
|vni+1 − vni |2/|ūni − v∗| � a > 0 for any ni → ∞. Since |vni − ūni | → 0, as
ni → ∞, we can choose a number ni0 such that the estimate |vni0 +1−vni0 |2/(|vni0 −
ūni0 | + |ūni0 − v∗|) � 1

2a > 0 holds for any ni � ni0 . However, this contradicts
(78).

Returning to inequality (74), we can see that, according to (70), (75) and (79),
the right-hand side of this inequality tends to zero as n increases. On the other
hand, it is bounded by αγ for any n → ∞. To resolve this contradiction, we must



306 ANATOLY ANTIPIN

assume that the approval |ūn − v∗| �= 0 is not valid for any n. Therefore, there
exists a number nf , such that ūnf is a solution to the variational inequality (20).
Since the function �(v,w) is convex in w ∈ � for any v ∈ �, the calculated point
is a equilibrium solution of (1), i.e., ūnf = v∗ ∈ �∗. The theorem is proved.

9. Convergence at the rate of geometric progression

In this section, we assume that the function �(v, v) has a quadratic order of sharp-
ness of the minimum; i.e., in (63) the parameter ν = 1

�(w,w)−�(w, v∗) � γ |w − v∗|2 ∀w ∈ �0. (80)

In respect that the function �(v,w) is convex in w for any v from (80), we have

〈∇w�(w,w), v
∗ − w〉 � −γ |w − v∗|2 ∀w ∈ �0. (81)

The quadratic function �(v, v) = 〈Av− b,Av− b〉 with nondegenerate matrix
A and vector b ∈ Rn satisfies this condition [7].

THEOREM 4. Suppose that the set �0 ∈ Rn is convex and closed; the solution
set of (1) is nonempty and satisfies sharpness condition (80), the objective function
�(v,w) is convex in w for any v, differentiable and its the gradient-restriction
∇w�(v,w)|w=v satisfies Lipschitz condition (64). Then, the sequence vn generated
by method (23) with parameter 0 < α < 1/(

√
2L) converges to the solution of (1)

at the rate of a geometric progression; i.e.,

|vn+1 − v∗|2 � q(α)n+1|v0 − v∗|2 as n → ∞,

where q(α) = (
1 + 4(αγ )2/d1 − 2αγ

)
< 1, d1 = 1 + 2αγ − 2(αL)2.

Proof. Using (30), (26) and (64), we rewrite (73) as

|vn − v∗|2 − |vn+1 − v∗|2 − |vn+1 − ūn|2 − |ūn − vn|2
+ 2(αLw)

2|ūn − vn|2 + 2α〈∇�(ūn, ūn), v∗ − ūn〉 � 0.

Applying (81), we get

〈∇w�(ū
n, ūn), ūn − v∗〉 � γ |ūn − v∗|2.

Therefore,

|vn+1 − v∗|2 + |vn+1 − ūn|2 + d|ūn − vn|2 + 2αγ |ūn − v∗|2 � |vn − v∗|2,
(82)

where d = 1 − 2(αL)2 > 0, since 0 < α < 1/(
√

2L). Using the identity

|ūn − v∗|2 = |ūn − vn|2 + 2〈ūn − vn, vn − v∗〉 + |vn − v∗|2,
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we transform (82)

|vn+1 − v∗|2 + |vn+1 − ūn|2 + d|ūn − vn|2 + 2αγ |ūn − vn|2
+ 4αγ 〈ūn − vn, vn − v∗〉 + 2αγ |vn − v∗|2 � |vn − v∗|2

or

|vn+1 − v∗|2 + |vn+1 − ūn|2 + d1|ūn − vn|2
+ 4αγ 〈ūn − vn, vn − v∗〉 � (1 − 2αγ )|vn − v∗|2

where d1 = 1 + 2αγ − 2(αL)2. We single out a perfect square from the third and
fourth terms:

|vn+1 − v∗|2 + |vn+1 − ūn|2 +
∣∣∣∣√d1(ū

n − vn)+ 2αγ√
d1
(vn − v∗)

∣∣∣∣
2

− 4(αγ )2

d1

∣∣vn − v∗∣∣2 � (1 − 2αγ )|vn − v∗|2,

As a result, we obtain

|vn+1 − v∗|2 �
(
1 + 4(αγ )2/d1 − 2αγ

) |vn − v∗|2.

Since α < 1/(
√

2L), we have q(α) = 1+4(αγ )2/d1−2αγ = 1+2αγ
(

2αγ
d1

− 1
)
<

1. Here 2αγ /d1 − 1 < 0.
Thus, |vn+1 − v∗|2 � q(α)|vn − v∗|2, hence,

|vn+1 − v∗|2 � q(α)n+1|v0 − v∗|2.
The factor q(α) of progression is a function of the parameter α. Minimizing

this parameter on the interval (0, 1/(
√

2L)), we can choose the best value of the
progression factor.

Since the function �(v,w) is convex in w ∈ � for all v ∈ �, the point v∗ is the
equilibrium solution of problem (1). The theorem is proved.

10. Conclusion

In this paper the splitting method of objective function of equilibrium problem on
a sum of symmetric and antisymmetric functions is offered. It is shown that such
splitting of functions results to decomposition of an equilibrium problem on a sum
of optimization and saddle-point problems. The properties of symmetric (pceudo-
symmetric) objective function are investigated and it is shown that equilibrium
problems with such objective functions are, in point of fact, optimization problems.
It is established their connection with potential game problems introduced earlier
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by Monderer and Shapley [22]. It is proved that prediction-type gradient method
convergence to to the solutions of symmetric equilibrium problems.

We offered the extension of antisymmetric functions up to a class of skew-
symmetric functions. Special technique for operating such functions is advanced.
It includes new concepts of by-differentiability, by-convexity and by-monotonicity.
Equilibrium problems with skew-sym- metric objective functions generalize concept
of saddle-point problems. Idea of splitting always allows to any objective func-
tion of an equilibrium problem assign a skew-symmetric function such that the
gradient-restriction of it coincides with gradient-restriction of initial function. It
enables capabilities for us to introduce concept of a saddle-point potential for
equilibrium problem. In view of this concept the convergence of a prediction-type
gradient method is proved and estimates of convefgence rate are adduced for the
equilibrium problems with a saddle-point potential. The elaborated technique can
be applyed to solving a variational inequalities with the nonmonotone operators
and it enables to solve some classes of such problems.
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